Блог им. QuantDetect |Преимущество машинного обучения в трейдинге

Задумываясь о совершенствовании трейдинговых стратегий, все мы приходим к выводу, что традиционные методы анализа данных становятся ограниченными. Человек способен обнаружить 5–10 закономерностей, иногда до 100, например на стратегии основанной на скользящей средней и цены, но этого недостаточно для работы на сложных и быстрых финансовых рынках. Нам нужно больше данных и возможностей для обработки информации, и здесь на помощь приходит машинное обучение (МО).

 

На данный момент МО используется потому, что оно позволяет анализировать огромные объемы данных и находить тысячи паттернов, которые недоступны человеческому мозгу, которые также в дальнейшем систематизируются и объединяются. За счёт этого можно получить более глубокую картину рынка и выявить текущие неэффективности, которые остаются незамеченными при ручном анализе.

 

В моделях МО интегрированы важнейшие элементы — money management и риск-менеджмент. Эти аспекты обеспечивают стабильность торговых стратегий. Используя эти данные, система автоматически корректирует объемы сделок и оценивает риски, позволяя минимизировать возможные убытки.



( Читать дальше )

Блог им. QuantDetect |Пять эффективных внедрений алгоритмических решений на $10 миллиардов

1. Virtu Financial

Компания Virtu Financial обрабатывает более 40 миллионов сделок в день, что составляет более 25% всех акций, торгуемых на американских фондовых рынках. Внедрение алгоритмической торговли и высокочастотных операций позволило снизить средний спред на 30%, что соответствует экономии в $1,2 миллиарда для инвесторов. В 2021 году прибыль Virtu составила около $1,5 миллиарда, а общий объем торгов достиг $3,0 триллиона.

2. Two Sigma

Two Sigma управляет активами на сумму около $60 миллиардов, использует алгоритмические модели и машинное обучение для анализа рыночных данных. В результате внедрения технологий эффективность торговых операций возросла на 20%, а средняя годовая доходность фонда составила 15%. Только в 2020 году фонд заработал около $2,7 миллиарда, благодаря улучшению своих алгоритмических стратегий.

3. Renaissance Technologies

Фонд Renaissance Technologies, управляющий активами более $100 миллиардов, достигает ежегодной доходности около 39%. Использование ИИ для анализа данных увеличило эффективность торговых операций на 25%. Это привело к дополнительной прибыли около $2,5 миллиарда в год, а в 2021 году фонд прибыл на $13 миллиардов, что стало результатом успешной оптимизации стратегий и применения алгоритмических моделей.



( Читать дальше )

Блог им. QuantDetect |Искусственный интеллект и ваши инвестиции: как алгоритмы генерируют прибыль

Искусственный интеллект (ИИ) радикально трансформирует финансовые рынки, отодвигая на второй план традиционные профессии аналитиков, трейдеров и управляющих активами. Алгоритмическая торговля, основанная на ИИ, становится основным инструментом на фондовых биржах, превосходя человеческие возможности в скорости, точности и объеме анализа. Будущее инвестиций — это мир, где алгоритмы управляют капиталом, оставляя все меньше пространства для участия человека.

 

ИИ действует полностью автономно, исключая субъективные ошибки, эмоциональные реакции и медленные решения, присущие людям. Алгоритмы способны анализировать терабайты данных в режиме реального времени, мгновенно адаптируясь к изменениям рыночных условий. Человеческие аналитики и трейдеры постепенно становятся устаревшими, поскольку ИИ принимает более точные и быстрые решения. Например, фонд Bridgewater Associates, управляемый Рэйем Далио, использует алгоритмы для принятия решений на основе данных, что позволило ему привлечь активы более чем на $120 млрд. Компания активно инвестирует в ИИ, стремясь автоматизировать до 75% своих процессов управления активами.



( Читать дальше )

Блог им. QuantDetect |Что модели Искусственного интеллекта и технологии Машинного обучении способны дать современному инвестору.

Сегодня инвестирование — это не просто выбор активов, это профессиональная диверсификация потенциальных доходов и диверсификация потенциальных рисков. Это умение найти и использовать все возможные инструменты для достижения стабильного роста капитала.

Современный инвестор, как правило, уже сформировал для себя несколько инвестиционных портфелей. Но, к сожалению, традиционные методы инвестирования больше не приносят ожидаемых результатов и не могут обеспечить адекватную прибыль.

Технологии трансформируют одну отрасль за другой – и инвестиции не исключение. Уже сейчас алгоритмические решения способны создавать уникальные инвестиционные стратегии, которые имеют значительное преимущество перед традиционными методами, и не просто следуют за рынком, а опережают его.

Так что же модели Искусственного интеллекта и технологии Машинного обучении способны дать современному инвестору?

1. Улучшение диверсификации и управление рисками: Алгоритмы анализируют огромные объемы данных, находя возможности и оценивая риски с точностью, недоступной для человеческого анализа. Это дает возможность эффективно диверсифицировать существующий портфель и минимизировать влияние рыночной волатильности.



( Читать дальше )

Блог им. QuantDetect |Объем активов хедж-фондов с алгоритмическим подходом.

Изначально, как молодая команда, мы заходили на рынок как сервис аналитики (B2B, B2C). Но в процессе общения с Asset Management, Family Office и Private Banking нам откровенно дали понять, никому не нужен еще один сервис аналитики. Есть доходность, вот капитал – управляйте.

 

Сейчас мы понимаем, что наша основная цель стать одним из лидеров рынка. Мы стремимся построить уникальную Fintech компанию, специализирующуюся на управлении активами на основе моделей Искусственного интеллекта и Машинном обучении (AIML — hedge fund).

 

В отличие от США, в России такой компании нет. Зарубежная практика показывает явное преимущество алгоритмических фондов перед классическими стратегиями, и тем более перед людьми. Объем активов под управлением глобальной индустрии хедж-фондов вырос до уже 4,5 трлн долларов. Ожидается, что до 2029 года он вырастет до 5,45 трлн долларов.

 

Лидеры мирового рынка, такие фонды, как Bridgewater или Renaissance стабильно, на протяжении многих лет, делают от 50% годовых, используя алгоритмический подход, статистические и математические модели. А объем активов крупнейшей AIML-шестерки составляет уже 516 млрд долларов.



( Читать дальше )

....все тэги
UPDONW
Новый дизайн